

D4.1.3 SRA Parser and Validation

Project ref. no. FP7-ICT-2011-7 GA-287639

Project Acronym SCENE

Start date of project (dur.) 1 November, 2011 (36 months)

Document due Date: 31/07/2014 (M33)

Actual date of delivery 28/07/2014 (M33)

Leader of this deliverable IVCI

Reply to haccius@intel-vci.uni-saarland.de

Document status Final

Version Date Description

1 11/07/14 Version for peer review

2 18/07/14 Rework after peer review.- Version sent to Coordinator

3 28/07/14 Final pdf. submitted

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 2 of 17

Deliverable Identification Sheet

Project ref. no. FP7-ICT-2011-7 GA-287639

Project acronym SCENE

Project full title Novel Scene representations for richer networked media

Document name SCENE_D4.1.3_13062014

Security
(dissemination

level)

PU

Contractual date
of delivery

Month 33, 31.07.2014

Actual date of
delivery

Month 33, 28/07/2014

Deliverable
number

D4.1.3

Deliverable name SRA Parser and Validation

Type D

Status & version Final

Number of pages 17

WP / Task
responsible

IVCI

Author(s) Javier Montesa, Pablo Arias, Wolfram Putzke-Röming, Jörn Jachalsky,
Andrej Schewzow, Ingo Feldmann, Johannes Furch, Sammy Rogmans,
Nick Michiels, Jean-Yves Guillemaut, Martin Klaudiny, Thorsten Herfet,
Victor Matvienko, Christopher Haccius

Other
contributors

Project Officer Philippe Gelin

Abstract This document describes the software deliverable of the SRA parser and
validation. The software deliverable includes the SRA API, a package
enabling the use of the underlying SRA structure as well as test data,
validation tests and usage examples.

Keywords Scene Representation Architecture, API, Parser, Persistence

Sent to peer
reviewer

11.07.2014

Peer review
completed

15.07.2014

Circulated to
partners

18/07/2014

Read by partners Via plone

Mgt. Board
approval

pending

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 3 of 17

Table of contents

Table of contents .. 3

1. Public executive summary .. 4

2. Introduction .. 5

Purpose of this Document ... 5

Document Structure .. 6

Related Documents ... 6

3. Software Description ... 7

SRA Backend .. 7

SRA Frontend ... 8

4. Description of accompanying Data Sets .. 9

Paris Pool Data Set ... 9

Paris Bowling Bar Data Set ... 10

Mannequin Data Set ... 10

Laura Data Set .. 11

5. Usage and Validation ... 12

Load / Write Camera Projection .. 12

Load / Write EXR Stream .. 12

Load / Write Stream .. 12

Load / Write Meshes ... 12

Load / Write Maps ... 12

Load / Write File Paths .. 13

Load / Write Binary Data ... 13

Visual Validation ... 13

6. Examples .. 14

Working with the Frontend .. 14

Working with the backend ... 14

7. Conclusion ... 16

8. Laboratory Validation of Prototypes .. 17

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 4 of 17

1. Public executive summary

Deliverable 4.1.3 comprises a software implementation of the Scene Representation Architecture
(SRA) and a description of this software. It implements the conceptual outline of the SRA from D4.1.1
and the technical specification of the SRA in D4.1.2. The SRA is a core development connecting
data acquisition in SCENE with data processing and data rendering algorithms. Besides a
description of the delivered software this document also provides usage instructions and tests for
validation.

In the SCENE project, multidimensional data is acquired by advanced hardware like the Motion
Scene Camera and different sensor setups as outlined in D3.3.3. Sophisticated algorithms as
presented in D4.2.2 and D4.3.3 need to access this data, and finally the data is visualized using
different scene rendering schemes. The SRA serves as the SCENE data exchange format, providing
both, captured and generated data, as well as metadata and annotations to algorithms and
visualization tools. Data is made available in the most flexible way, allowing access to arbitrary parts
in arbitrary formats contained in the Scene Representation.

The Software is C++ source code with CMake files for facilitated installation. It has been tested on
both Windows 7 and Ubuntu.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 5 of 17

2. Introduction

Purpose of this Document

This document contributes to the SCENE objective O4.

O4: (Research and Develop) A video scene representation that can combine image based and
computer graphic information with metadata to deliver an inherent 3D, spatio-temporally
consistent worldview.

The DoW describes the general task of WP4 as follows:

The goal is to bridge the gap between image-based formats (texture plus depth, multi-view, etc.)
and object-based formats that are computer graphics oriented (polygon meshes, voxel based
representations, etc.). The new format will be based on 4D patch-like super-structures, which are
parameterized in the 4D spatio-temporal domain. Additional parameters, such as 4d spatio-
temporal patch shapes, patch neighbourhoods, etc. will create a powerful scene description that
is suitable for future immersive visual media content production. The new scene format implicitly
includes state of the art scene representations, such as texture plus depth, voxels or meshes.
Beyond this, it allows additional powerful spatio-temporal scene parameterizations, which allow
immersive interaction and navigation as well as manipulation and rendering without any semantic
knowledge about objects or masks in the image domain.

More specifically,

in WP4T1 SCENE dissolves the limits between sample-based (video, depth sensors) and object-
. shape-based (computer graphics) representations. Since real-time extraction of object
information from scenes is still in its infancy while the real-time generation of patches from
triangular or polygonal meshes is state of the art the Scene Representation Architecture (SRA)
will comprise the following components:

 The SRA-base layer will be a patch assembly. Patches are characterized by their position
in 4-dimensional space, their shape, orientation, color and orientation and their transparency.
The SRA base layer enables a smooth merging of camera- and computer-generated content
and a scalable rendering across a variety of devices and scene complexities. It does,
however, lack information on spatio-temporal coherence and on more advanced material
characteristics like reflectivity.

 The SRA-scene layer will add advanced information about the patches as far as they are
available. For computer-generated scenes characteristics like lighting, materials (reflectivity,
shaders etc.) will be added. For camera-generated scenes spatio-temporal coherence
information derived in WP3T3 and WP4T2/3 will be added together with extracted material
reflectance WP4T4 to improve the co-existence of natural and synthetic scene components
beyond the state of the art.
The coherence layer requires a unique identification of the patches in the base layer.
Consequently an unambiguous way of addressing patches will be developed.

 Finally, the SRA-director layer will provide information required to render the final scene in
the way the director foresaw. Ingredients are view point, exposure times, apertures / depth
of field, camera motion etc.

This document describes the software demonstrator which presents a parser and validation for the
above mentioned Scene Representation Architecture. The parser exposes an interface to the user
which allows adding many standard file types to the SRA, most importantly all file types which have
been agreed as exchange types in the SCENE project. Moreover, it allows reading these file types
for usage by further processing or visualization applications. A description and usage explanation of
the accompanying demo datasets is given as well.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 6 of 17

Document Structure

Section 3 describes the software implementation of the Scene Representation Architecture. The
SRA consists of a backend implementation providing a persistency structure and a frontend
implementation exposing functionality to users.
Section 4 gives details about data sets generated in the SCENE content and available for tests with
the SRA. Instructions how to use the SRA with the aforementioned datasets and descriptions of the
included validating tests are given in Section 5. Two examples illustrating the use of the SRA
backend and frontend are explained in Section 6. Finally a conclusion is drawn in Section 7.

Related Documents

This document and the software deliverable are based on the description of the SRA contained in
D4.1.1 and the technical specification of the SRA as described in D4.1.2. Core requirements of the
SRA are to structure and persist data produced by the various acquisition methods evaluated and
used in SCENE, as explained in D3.3.3, with the Motion Scene Camera presented in D3.2.3 as the
central acquisition hardware.
The SRA provides an interface for Scene analysis and post-processing algorithms described in
D4.3.3, as data from the SRA is an input to those algorithms and output data is written back to the
SRA. Finally, D5.1.3 describes renderers capable of visualizing data in the SRA format.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 7 of 17

3. Software Description

The Scene Representation Architecture combines a data structure and the necessary procedural
interface to access it. The SRA demonstrator shows different small use cases of how to

- write data to the SRA,
- access data in the SRA, and
- visualize data from the SRA.

The software is implemented in C++, and was tested under Windows and Ubuntu operating systems.
For Ubuntu, CMake files exist which facilitate the make process. The SRA was successfully build as
Visual Studio and Eclipse project, allowing programmers a wide choice of programming interfaces.

The SRA is structured into two major parts, the backend which provides a data structure, and a
frontend to access the backend data structures.

SRA Backend

The backend provides all the necessary structures to store any kind of data relevant to SCENE
representations. Core to a Scene is its structure in the SRA. The Scene contains Acels, which we
call the Atomic Scene Elements, the elements a scene is composed of. Atomic here is the smallest
structure that is applicable in a given context. This means, that a whole image (which might, as a
frame, be the smallest structure in a video) is an acel, but at the same time its individual pixels are
acels in image processing context. Therefore, in the underlying structure, acels, are again
compositions of further Acels, Values, and Properties. Values can be any data or data array.
Properties contain a descriptive name and further Acels assigning values to the property. This
structure is presented in Figure 1. For a full description of the conceptual meaning behind the
different layers represented in a Scene and Acels as the basis structures please refer to Documents
D4.1.1 and D4.1.2.

Figure 1: SRA Sructure of Acels

Behind the backend can be any kind of mechanism providing persistency. Currently the Google
Prototype Buffers are implemented, but it can be extended to any other kind of structure which
supports element structuring as displayed in Figure 1.

The Scene Backend is accessed through the sra_scene.h header file. This function exposes the
following public functions to work on Acels:

- virtual oid_t Id(): the unique id, equal for the acels with identical content

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 8 of 17

- virtual bool SetId(oid_t id): sets acel id, returns false if the ID is already defined
- virtual IAcelList* ChildAcels(): gets the list of child acels
- virtual std::shared_ptr<IAcel> Property(string name): retrieves property with given name
- virtual std::shared_ptr<IAcel> AddProperty(string name, oid_t id): adds a property with

given name and unique ID
- virtual bool DeleteProperty(string name): delete a property with the given name
- virtual std::shared_ptr<IAcel> AddChild(oid_t id): add a child acel with given ID virtual
- bool DeleteChildId(oid_t id): delete child Acel by ID
- virtual bool DeleteChild(size_t index): delete child Acel by index in list of child Acels.
- virtual IAcelValue* Value(): retrieve the value of an Acel
- virtual IAcelValue* SetValue(): set the value of an Acel
- virtual void ClearValue(): remove the value of an Acel
- virtual ~IAcel(): destructor for Acel

SRA Frontend

The SRA frontend structures and facilitates the use of the SRA backend. Since elements in the SRA
are ID based, the frontend offers an ID management system. This way, the user can add Scene
content in the form of Acels without worrying about IDs. Furthermore, it exposes a couple of easy-
to-use functions to the user to write and retrieve various data types to and from the SRA. The file
sra.h exposes the following functions to the user:

- Scene(std::string sceneFile): start a new or open an existing Scene with the given filename.
sceneFile is the parameter containing the filename.

- virtual ~Scene(): desctructor for Scene
- int writeScene(std::string sceneFile): write a Scene to file, where sceneFile identifies the

file name
- bool removeAcel(int id): remove an Acel with given id from Scene
- int addMesh(std::string filename, meshType::type type, int parentId, int **ids): add a

mesh (from an arbitrary format file) to an existing scene. fileName specifies the input file,
type gives the data type (OBJ, STY, ...) and parentId gives the ID of the parent acel to the
new mesh. ids is the returned list of all child acels which are added in the process, as each
mesh contained in a file is stored as an individual acel.

- aiMesh *getMesh(int id): retrieve a mesh from a Scene. Mesh is returned as an ASSIMP
Mesh structure

- int addMap(std::string filename, mapType::type type, int parentId): add a Map (image,
depth) to an existing scene

- CImg<unsigned char> *getMap(int id): retrieven a Map from a Scene. Map is returned as
CImg structure

- int addFilePath(std::string filename, int parentId): add a file path linking an external file
to a Scene.

- std::string getFilePath(int id): retrieve the path to a file from a Scene.
- int addBinaryData(std::string filename, int parentId): add a binary file to a Scene.
- int getBinaryData(int id, char **buffer): retrieve a binary file from a Scene
- int addCameraProjectionMatrix(const std::string cameraName, const

sra::float_buffer_t& projectionMatrix, const std::vector<std::string>&
correspondingStreams, const int parentId): add a camera projection matrix to a Scene.

- bool getCameraProjectionMatrix(const int id, std::string& cameraName,
sra::float_buffer_t& projectionMatrix, std::vector<std::string>&
correspondingStreams): retrieve a camera projection matrix from a Scene.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 9 of 17

4. Description of accompanying Data Sets

Numerous sample data sets were produced in the context of the SCENE project. For the datasets
introduced below samples are included in the sample-data-folder accompanying the deliverable. For
access to the whole data please contact the consortium (http://3d-scene.eu/).

Paris Pool Data Set

The Paris Data Set is one of the earlier data sets produced by the SCENE consortium. It includes
bowling and pool scenes, taken from different cameras. The raw footage of the take is in the m2t
format which is the Blu-ray Disc Audio-Video (BDAV) MPEG-2 Transport Stream (M2TS) container
format. The first take has a total number of 5,561 frames at a resolution of 1440x1080 pixels each,
stored in the png format. A sample frame along with its corresponding depth map is shown in Figure
2. The left image is the original frame and the one on the right shows the depth map.

Figure 2: Sample of Paris Pool Data

Another 2000 frames of this scenario have been captured with an early stage Motion Scene Camera
and a second Alexa on a stereo rig. Its raw data (tiff format) from the left and right cameras are
included in their native resolution of 2048x1536. This data is accompanied by depth maps captured
by a time of flight sensor. However, while the time of flight sensor was at a later stage of the SCENE
project integrated into the camera to shoot through the same optical system, this is not yet the case
for the available depth data. The setup at the capture site is shown in Figure 3. Calibration data for
the cameras is available in the provided data set.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 10 of 17

Figure 3: Early State Motion Scene Camera Setup

Paris Bowling Bar Data Set

This data set shows a man standing at the bar table in an Bowling alley. This data set has been shot
using 8 calibrated cameras. The calibration information of the cameras has been included as part of
the data set. The data from each of these cameras are stored in bmp format having a resolution of
1920x1080 pixels per frame. Depth information for each frame is calculated and stored in exr format.
A sample of the images from two different cameras (Cam1 and Cam7) is shown in Figure 4.

Figure 4: Sample of Paris Bar Table Data Set

Mannequin Data Set

The Mannequin Data Set shows a bevy of mannequins with a female actor interacting with the
scenario. The data set includes data captured with the Motion Scene Camera extended by an ARRI
Alexa on a stereo rig. The data from both, left and right camera, is included. The data consists of
RGB frames stored in the logC wide gamut color space. This color space can be converted to linear
color space using a LUT. There are a total of 408 frames each having a resolution of 1920x1080.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 11 of 17

The depth maps captured by the TOF camera have a native resolution of 325x198 pixels. They are
stored in 16bit tiff format. An example of the original image and its corresponding depth map is
displayed in Figure 5.

Figure 5: Sample of Mannequin Data Set

Laura Data Set

The Laura Data Set display a female actor in front of a green screen with simple motion. The data
set contains RGB Images with a resolution of 1920x1080 calibrated according to ITU Rec. 709.
Spherical depth maps which have been registered to the RGB image. Each depth map has a
resolution of 352x198 pixels and has lens distortions corrected. The aligned and optically undistorted
depth is part of the data set, as well as the raw spherical depth maps. Furthermore, upscaled HD
depth maps are included, with a resolution of 1920x1080 generated using the joint-bilateral NAFDU
algorithm. Figure 6 shows an example of the data set: the actress in the studio and the corresponding
depth map.

Figure 6: Sample of Laura Data Set

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 12 of 17

5. Usage and Validation

To work with the SRA frontend the sra.h header file needs to be included. This file is located in
./sra/scene-persistence/sra.h, The functionality is described in Section 3.1. When working on the
SRA backend, the file sra-scene.h needs to be included. This file is located in ./sra/scene-core/sra-
api/sra-scene.h, and its core functionality is also described in Section 3.2.

In the parent SRA folder a CMakeLists file is contained. Using CMake the whole SRA including unit
tests can be build. These unit tests validate different use cases of the SRA.

Load / Write Camera Projection

This unit test has two files, LoadCameraProjectionTest and WriteCameraProjectionTest. It
showcases how camera projection matrices can be stored in the SRA and retrieved from the SRA.
A camera projection matrix is a 3x3 matrix of integer or double values. Two examples demonstrate
a simple and a more complex use of writing such a matrix to the SRA in a structured form.

Load / Write EXR Stream

This unit test consists of the files LoadEXRStreamTest and WriteEXRStreamTest. It demonstrates
the use of EXR streams in the SRA. The EXR format allows storing multi-channel maps, which
becomes relevant when storing RGB plus depth information in a single frame or high precision depth
data. For EXR data OpenCV is required.

Load / Write Stream

Compared to the above mentioned use case this example demonstrates the storage of arbitrary
consecutive files in a stream. It consists of two files, LoadStreamTest and WriteStreamTest. Streams
extend the SRA structure by a common format to represent consecutive data, e.g. frames in a video.

Load / Write Meshes

This example is contained in the file PersistanceAPI-Test. It demonstrates the storage of meshes
and retrieving whole meshes or individual vertices from a mesh. Meshes are returned from the SRA
as ASSIMP Meshes, thus requiring the ASSIMP Library.

Load / Write Maps

Loading and writing maps, like images or depth maps, is demonstrated in this test. It is contained in
PersistenceAPI-Test and showcases storage of whole maps, their retrieval and the access of
individual channels or pixels. Image access requires the OpenCV library.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 13 of 17

Load / Write File Paths

Writing file paths to the SRA is a common way to include objects into a Scene, without restructuring
a file to the SRA. A demonstrating example is included in PersistenAPI-Test, which shows how file
paths can be inserted into and read from a Scene.

Load / Write Binary Data

Speed, size and portability are the major reasons for including binary data into a Scene. Such data
is not further structured, that means, if an image is stored as binary data, individual pixels cannot be
accessed, or if a mesh is stored as binary data its vertices cannot be referenced individually. An
example showcasing the insertion and extraction of binary data to and from a scene is shown in
PersistenceAPI-Test as well.

Visual Validation

Scenes can be visualized by different tools implemented in the SCENE project. One such application
is the Scene Renderer, which is fully described and provided as software in D5.1.3.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 14 of 17

6. Examples

Working with the Frontend

The following example illustrates the use of the SRA frontend. In this example, the user will add an
.obj file containing several meshes to a scene. This requires the ASSIMP library to be installed.

In his source, the user needs to add the SRA frontend and a filetype specification:

#include <scene-persistence/sra.h>

#include <scene-persistence/backend/filetypes.h>

He can than create a scene or load an existing scene file. This is done automatically, depending on
the existence of the named file:

string sceneName = "myScene.sra";

Scene myScene(sceneName);

Any new scene objects need to be added to a parent Acel. If no parent Acel is specified, or the
specified Acel does not exist, the new content is added to the top Scene level. Here, we add the
contents of file “test.obj” to the parent acel with id 10. The file type needs to be specified with the
input; this information is coming from defined types in “backend/filetypes.h”.
The function returns an integer value with the number of meshes added to the scene. This number
corresponds to the number of meshes contained in the input file. Additionally, a pointer to a list of
ids is returned, allowing the user to access the newly added meshes in the scene structure.

string meshName = "test.obj";

int parentID = 10;

int numOfMeshes = myScene.addMesh(meshName, meshType::OBJ, parentID,

&ids);

The mesh, all faces and vertices, normal vectors and texture coordinates are now stored as
individually structured acels in the scene file and can be individually accessed and processed.

Meshes as a whole are returned as aiMeshes, the native structure of the ASSIMP library. To do this,
the id of a mesh in the Scene file has to be passed to a function asking for the mesh. The following
query returns the first of the meshes added above to the Scene file.

aiMesh *myMesh = myScene.getMesh(ids[0]);

Working with the backend

Programmers can access the backend directly. In this case, they need to take care of id
management, creation of scene files and parsing of content themselves. To work with the backend,
the backend headers need to be included in the source code:

#include <scene-core/sra-api/sra_scene.h>

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 15 of 17

#include <scene-core/sra_implementation.h>

In the backend, a Scene is constructed as a PScene object:

PScene sc = sra::make_scene_representation(".");

The programmer needs to choose an ID that is currently unused:

sra::oid_t id = 2;

And can than add any integers, strings, vectors or other standard data types to a child acel created
with this id:

PAcel acelVal = globals->AddChild(id);

acelVal->SetValue()->SetFloat(50.3);

id++;

PAcel acelVal = globals->AddChild(id);

acelVal->SetValue()->SetString(“test”);

To retrieve a value from the Scene structure, the programmer needs to know the ID and the type of
the data he wants to access. The following line retrieves the float value stored in the lines above:

double out = globals->GetId(2)->Value()->GetFloat();

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 16 of 17

7. Conclusion

This document describes the software deliverable D4.1.3. It concludes the development of the SRA
as described in the DoW of the SCENE project. However, during the project the SRA has been
developed to provide a structure appreciated for merging content from multiple sources with meta-
information describing whole scenes. Due to that the development of the SRA has by far not come
to an end: it just reached a state where it becomes useful. Future usage in different projects and for
other goals will require extensions of the SRA, and many important aspects like compression or
streaming of the SRA have not yet been touched. While this document describes a working software
solution and presents a successful evaluation and usage of this package, we are still looking forward
to the SRA being further maintained, extended and used by both academic and industry.

 D4.1.3 SRA Parser and Validation

31/07/2014 Page 17 of 17

8. Laboratory Validation of Prototypes

Assessment / Validation measure Level / Threshold Comments and conclusions

Store Data in SRA
The SRA includes a number of file parsers to store
different file formats in SRA. Parsing those files can
either be successful or unsuccessful.

Tests as described in Section 5 have shown that many map
types (all those supported by OpenCV) and many mesh types
(all those supported by ASSIMP) as well as any form of data
included as file path or binary data is supported.

Retrieve Data from SRA The SRA should return data stored in the SRA for
further processing. Returning this data can be either
successful or unsuccessful.

Tests as described in Section 5 have shown that maps and
meshes can be returned as types defined by the respective
libraries. File paths and binary data of arbitrary formats can be
returned. Furthermore, individual mesh vertices and vectors as
well as pixels in meshes can be accessed.

Visualize Data from SRA Data in the SRA format can be visualized using the
Scene Renderer. Understanding an SRA file can either
be successful or unsuccessful, visual evaluation of the
renderer is part of the evaluation of D5.1.3.

As described in D5.1.3 data in SRA format can be read and
visualized by the Scene Renderer, thus providing a validation
for the content of a Scene file.

