
SCENE_D4.1.2_22052013 Page 1 of 39

D4.1.2 Technical Specification of the SRA

Project ref. no. FP7-ICT-2011-7 FP7- 287639

Project acronym SCENE

Start date of project (dur.) 1 November, 2011 (36 months)

Document due Date : 30 April 2013 (month 18)

Actual date of delivery 22 May 2013

Leader of this deliverable IVCI

Reply to haccius@intel-vci.uni-saarland.de

Document status Final

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 2 of 39

Deliverable Identification Sheet

Project ref. no. FP7-ICT-2011-7 FP7- 287639

Project acronym SCENE

Project full title Novel Scene representations for richer networked media

Document name SCENE_D4.1.2_30052013

Security (distribution level) PU

Contractual date of delivery Month 18, 30.04.2013

Actual date of delivery Month 19, 22.05.2013

Deliverable number D4.1.2

Deliverable name Technical Specification of the SRA

Type Report

Status & version Final

Number of pages 39

WP / Task responsible IVCI

Author(s) Thorsten Herfet (IVCI), Victor Matvienko (IVCI), Christopher
Haccius (IVCI)

Other contributors -

Project Officer Philippe Gelin

Abstract
The technical specification of the Scene Representation

Architecture is an important step towards the integration of
all SCENE related algorithms and tools into a unified project.
This document contains the technical realization of the
conceptual description of the Scene Representation
Architecture contained in document D4.1.1. Furthermore, it
presents an API enabling the requirements to the Scene
Representation Architecture identified in document D4.3.1.

Keywords Scene Representation, API, Technical Specification

Sent to peer reviewer 24 April 2013

Peer review completed 21 May 2013

Circulated to partners 22 May 2013

Read by partners Yes

Mgt. Board approval Pending

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 3 of 39

Table of contents

1 Public Executive Summary ... 4

2 Introduction ... 5

3 Structure of the document .. 7

4 Conceptual Description of SRA .. 8

4.1 The Base Layer ... 8

4.2 The Scene Layer ... 9

4.3 The Directors’ Layer .. 10

4.4 Feedback on Scene Concepts .. 11

5 Algorithmic Requirements to the SRA .. 19

5.1 Requirements from application and user side ... 19

5.2 Requirements from algorithmic point of view .. 20

6 Technical Specification of SRA API .. 22

6.1 Motivation .. 22

6.2 Basic Access to SCENE Data ... 23

6.3 Scene Tools ... 27

6.4 Access for Applications ... 29

7 Examples .. 31

7.1 Video Rendering .. 31

8 File Format .. 33

9 Conclusion .. 37

10 Summary .. 38

11 Bibliography .. 39

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 4 of 39

1 Public Executive Summary

The technical specification of the Scene Representation Architecture is an

important step towards the integration of all SCENE related algorithms and tools

into a unified project. This document contains the technical realization of the

conceptual description of the Scene Representation Architecture contained in

document D4.1.1. Furthermore, it presents an API enabling the requirements to

the Scene Representation Architecture identified in document D4.3.1.

The document begins with a recap of the conceptual description and the

results of a feedback request sent to multiple experts to receive feedback on

this conceptual description. This conceptual evaluation is succeeded by a

section briefly listing the main requirements from an algorithmic and use case

perspective. The main part of this document technically describes the

implementation of a SCENE API enabling already defined requirements and

allowing future project development and enhancements at the same time.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 5 of 39

2 Introduction

The SCENE project develops novel scene representations for digital media,

which go beyond the current ability of either sample based or model-based

methods to create and deliver richer media experiences to either 2D or 3D

platforms. From a technical and research point of view, one challenge of this

task is to capture, process and modify 2D and 3D content in a joint, efficient and

modular way in order to keep the advantages and the power of existing

representation formats and add additional 3D scene features. An architecture

which meets these challenges was introduced and discussed in SCENE

Deliverable D4.1.1. The technical requirements from an algorithmic view are

contained in SCENE Deliverable D4.3.1. It is strongly recommended to be

familiar with both documents when dealing with the contents of this document.

This document contains the technical specification of the Scene

Representation Architecture as conceptually introduced in D4.1.1. Main

challenges here are to provide a flexible and extendable specification for an on-

going project with ever changing and ever increasing demands. The proposed

solution is an API which provides access to SCENE data and basic

computational functionality. As core file format related specifications are

depending on multiple demands currently still under development an API

provides the most adequate solution to meet these demands. Furthermore,

format specific developments like storage, compression or streaming

capabilities need to be researched in dedicated future project parts and findings

in these areas will help to design and specify a SCENE file format. Up to that

point the proposed API is a lot more flexible and extendable compared to a

fixed file format, and allows adopting the underlying file format to the future

requirements.

The following figure presents a rough conceptual outline of the proposed API

as an interface between the scene data and tools that make use of the scene

data. An arbitrary number of sources can feed into the scene data, and the

sources itself as well as the converters to convert into the scene data format are

not part of the technical specification. In a similar fashion, the technical

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 6 of 39

implementation of the interface between API and scene data is not specified,

but only requirements are given here. The interface for the tools of the SRA API

is specified, such that tools can be implemented which employ scene data

independent of the underlying data structure.

Figure 1: Overview of Structure of Scene Components

This specification comes with a basic implementation of the SRA which also

serves as a prototype implementation for further data and module requirements.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 7 of 39

3 Structure of the document

This document starts with the conceptual description of the SRA. This

description has been proposed in D4.1.1. Feedback requests have been sent to

over 60 experts in more than 20 companies. In these requests the experts have

been asked for their opinion on the Scene Representation Architecture. The

evaluation of this feedback has been included into this document as a

motivation for the further specification and implementation of the SRA.

In the following section the Technical requirements motivating the design of

the SRA are summarized again. Those technical requirements are fully

specified in D.4.2.1.

Afterwards the technical specification of the SRA is given. This technical

specification aims to provide an easily extendable framework for future

implementations. The core goal is to provide basic functionalities already and

provide the necessary functionality for further enhancements according to the

demands of other tools. Furthermore, the addition of further functionality is

exemplarily shown for the scene renderer which uses the SRA to render scene

content. The structure here is a presentation of access to the scene data first

and second how tools and modules are used in the context of the SRA.

The example of video rendering shows step-by-step how a communication

between renderer and SRA is established and used.

This document concludes with comments on the file structure of the SRA. The

proposed API does not enforce any file format or structure. All data formats

currently or prospectively required can easily be included. An example

implementation illustrates the use of Google Protocol Buffers [1] to store

hierarchically structured data.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 8 of 39

4 Conceptual Description of SRA

Common video formats have only one graphics layer, which contains the

visual information of the video. Post processing steps can only deal with

information available in this layer, which is at the same time the same

information that is seen by any user. The Scene format’s most important

innovation is that the user does not see what is captured. This means we can

have a lot more information which helps in processing steps but which shall not

be seen by the final viewer. A simple example is the following: A moving object

shall be motion blurred. In a traditional video the object would be shot with

camera parameters such that the object is blurred (disturbed data) post

processing of this blurred data is difficult, if not impossible. With the scene

format we can capture the moving object in the best possible quality (not

blurred) and introduce the blur as an effect. This allows easier post processing /

tracking / modification of the object.

To achieve this (and other) innovations, the Scene format is layer based.

Conceptually the Scene format is divided into three different layers, a Base

Layer, and a Directors’ Layer.

4.1 The Base Layer

The Base Layer stores the most basic "physical" information of a scene. As in

the real world, the base information is usually undisturbed, means not blurred,

everything sharp, full colour space and very densely sampled (or rather

continuous) in all dimensions. The Base Layer therefore contains captured data,

which can be processed by algorithms already, but where no (meaningful) data

shall be discarded. Blurring, clipping, and other effects which remove data

irreversibly shall be avoided for this physical data as much as possible. Each

captured element is a small part of a large scene, and atomic since either

capturing device or algorithm have at some point in time decided that a certain

amount of data belongs to the same piece of an object. These atomic scene

elements are abbreviated “acels”. Conceptually, the Base Layer contains the

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 9 of 39

set of props, stage decor, etc. ("Ausstattung"), which can be used in a movie

production.

The Base Layer comprises an arbitrary number of acels of a scene. All data

contributing to the Base Layer needs to be located such that it can be non-

ambiguously assigned to one scene. Acels in the Base Layer are addressed by

unique identifiers. The naming convention is such that acels can be easily

added and removed from the Base Layer.

In addition to the “physically” captured data the Base Layer provides

functionality to store additional metadata. This metadata can be used to

reproduce the processing steps of the acel information (provenance

information) and recover the original data (as recorded by an acquisition

device). In order to ensure lossless storage the original raw data remains as the

basis for a further processing step in the scene information.

4.2 The Scene Layer

The information in the Base Layer might originate from many different

sources which are calibrated in themselves but not in a global setting, cover

different dimensions and be of very different types. The Scene Layer merges

the Base Layer information to a coherent scene. Each acel needs to be defined

for all dimensions occurring in a scene, and inter-acels coherencies need to be

stored. The Scene Layer conceptually is the stage, where props, decor, etc.

form a fully assembled scenario.

Each scene is uniquely identified (e.g. by an ID). All dimensions used in the

scene which are required to be a superset of the acel dimensions need to be

specified in the header of the scene. Acels are placed in a scene by giving the

unique acel identifier and a specific position in all dimensions the scene is

defined with. The Scene Layer can transform the whole acel, but not entries of

an acel. All kinds of affine transformations (e.g. translation, rotation, sheering,

expansion, reflection, …) on arbitrary acel dimensions are allowed.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 10 of 39

Acel transitions which belong to the “physically” acquired data are stored in

the Base Layer. However, explicit transition or transformation rules are

described in the Scene Layer.

Acels can be coherent to other acels. In addition, acels can be likely to be

coherent to other acels. Coherencies are managed per dimension and assigned

for each pair of acels.

The Scene Layer allows the storage of additional metadata for each Scene

element, if available semantic information can be provided for the objects

contained in a scene either manually or automatically. In addition, developer’s

information can be stored in the Scene Layer to facilitate postproduction.

4.3 The Directors’ Layer

Looking at a scene a viewer has almost unlimited freedom. Since all

information is available in the best quality and assembled to a full scene, the

viewer himself can take the role of a director and view whatever he wants. The

Scene Layer prohibits this, by defining how a user shall interact with the scene.

The simplest form of interaction is viewing through a camera. The Directors’

Layer defines a fully specified camera, its parameters, location in space and

viewing direction. The Directors’ Layer also defines artistic degradation of data,

e.g. by introducing blurs, reducing sharpness, cutting colour channels, etc.

Beyond these camera specifications the Directors’ Layer may specify other

ways of user interaction, e.g. allowing a certain freedom in the camera

movement which the viewer may choose, different viewpoints, content

manipulation or content interaction. So conceptually the Directors’ Layer creates

a piece of art from a stage by defining what the viewer will see and how the

user can interact with the content.

Cameras are defined by a set of parameters, which are set as explicit values.

The set of parameters can be differentiated into intrinsic and extrinsic

parameters. Cameras used to observe a scene do not become part of that

scene, so another camera looking at the position of the first camera does not

observe any object there.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 11 of 39

By default, no user interaction is allowed. If the director wants to specifically

allow user interaction, a rule needs to describe the allowed interaction. Rules

may allow any changes to the Scene Layer, e.g. affine transforms on all

dimensions of acels or groups of acels. User interaction cannot alter the acels

themselves contained in the Base Layer. Therefore, a user may be permitted by

rules to change the appearance of a scene, but he may not change the physical

content of a scene. A rule specifies a scene, an acel, a dimension and gives the

range of allowed interaction.

Figure 2: Conceptual Layer Based Architecture of Scene Data

4.4 Feedback on Scene Concepts

According to the DOW, feedback requests on the conceptual SRA description

have been sent to experts in areas related to the SCENE project. 16 experts

have replied and given detailed feedback on the concepts introduced in the

D4.1.1. In the following the questionnaire average answers are marked in dark

blue () and the range of answers is marked in light blue ().

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 12 of 39

4.4.1 Historical Motivation

Throughout history the bottleneck of image or movie capturing devices has

been the film; in recent times the image sensor. This bottleneck enforced

constraints on the optical system. For low light conditions long exposure times

or large lenses had to be chosen. The resulting artefacts like motion blur or

limited depth of field have formed movies throughout the last century; they even

became desired artistic elements and stylistic devices in movie productions.

During the last years, new chip technologies have enhanced available image

sensors to a level where this physical bottleneck is removed. The amount of

light necessary to create an image does not usually dictate camera parameters

any more. The Scene Representation Architecture is designed to represent data

beyond this bottleneck.

The historical motivation is: clear implausible

4.4.2 A common representation

When processing multidimensional video data on a computer, a multitude of

information sources is required. Video from several sources, camera calibration

data, lighting information and spatial knowledge just to name a few. Our

proposed architecture unites all the information necessary for a movie scene

production in a single representation.

A common representation

1) facilitates post-processing: yes no

2) enhances the users’ media experience: yes no

3) enables new artistic features: yes no

4) is relevant for content producers: yes no

5) Is relevant for content distributors: yes no

6) Is relevant for content consumers: yes no

7) Is interesting for your company: yes no

8) Is interesting for you as a private person: yes no

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 13 of 39

4.4.3 Storing undistorted data

When introducing artistic elements like motion blurs or depth of field these

effects are traditionally modifying the captured data. Post processing such data

is time consuming and difficult. The proposed Scene Representation stores all

data in the best available quality, and introduces altering effects in a higher

layer, thus preserving all available data for facilitating image and video

processing steps.

Being able to store undistorted data

1) facilitates post-processing: yes no

2) enhances the users’ media experience: yes no

3) enables new artistic features: yes no

4) is relevant for content producers: yes no

5) Is relevant for content distributors: yes no

6) Is relevant for content consumers: yes no

7) Is interesting for your company: yes no

8) Is interesting for you as a private person: yes no

4.4.4 Content Interaction

Image or video content is usually frame-based. The Scene Representation is

object based and therefore allows segmented content (segmentation is not

restricted to 2D but can have all spatial and temporal dimensions). Knowledge

about objects contained in a Scene allows the adjustment of scene objects such

as updated product placement, object modification or user interaction.

Enabling interaction with scene content

1) facilitates post-processing: yes no

2) enhances the users’ media experience: yes no

3) enables new artistic features: yes no

4) is relevant for content producers: yes no

5) Is relevant for content distributors: yes no

6) Is relevant for content consumers: yes no

7) Is interesting for your company: yes no

8) Is interesting for you as a private person: yes no

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 14 of 39

4.4.5 Unified Representation

Computer generated content and captured video stem from two very different

worlds and are processed largely independently in movie productions. The

Scene Representation Architecture allows a unified representation of both,

computer generated and captured video data, as well as intermediate

processing steps, thus merging both worlds in an early stage and facilitating

post production ("early fusion").

Having a unified representation for computer generated and captured video

data

1) facilitates post-processing: yes no

2) enhances the users’ media experience: yes no

3) enables new artistic features: yes no

4) is relevant for content producers: yes no

5) Is relevant for content distributors: yes no

6) Is relevant for content consumers: yes no

7) Is interesting for your company: yes no

8) Is interesting for you as a private person: yes no

4.4.6 Motivation for Layer Based Architecture

Considering the novelties mentioned above a representation is required,

which a) can contain both, computer generated data and captured video data,

avoiding a lossy transformation process in between b) can combine different

kinds of information in the context of a scene c) can apply the traditionally

required effects like blurs without affecting the underlying data Our approach is

a layered based architecture, where three layers fulfil the requirements of a), b)

and c). We call the layer for a) the Base Layer, the layer for b) the Scene Layer

and the layer for c) the Directors' Layer.

The motivation for three layers as described above is:

 clear implausible

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 15 of 39

4.4.7 The Base Layer

The Base Layer stores the most basic "physical" information of a scene. As in

the real world, the base information is conceptually sharp, of a full color space

and quasi-continuous in all dimensions. Blurring, clipping, and other effects

which remove data irreversibly are avoided for this physical data as much as

possible. Conceptually, the Base Layer contains the set of props, stage decor,

etc., which can be used in a movie production. Base Layer elements for the

pool scene shown above are:

A Base Layer as described

1) facilitates post-processing: yes no

2) enhances the users’ media experience: yes no

3) enables new artistic features: yes no

4) is relevant for content producers: yes no

5) Is relevant for content distributors: yes no

6) Is relevant for content consumers: yes no

4.4.8 The Scene Layer

The information in the Base Layer might originate from many different

sources which are calibrated in themselves but not in a global setting, cover

different dimensions and be of very different types. The Scene Layer

complements the Base Layer information to form a coherent scene. The Scene

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 16 of 39

Layer conceptually is the stage, where props, decor, etc. form a fully assembled

scenario.

A Scene Layer as described

1) facilitates post-processing: yes no

2) enhances the users’ media experience: yes no

3) enables new artistic features: yes no

4) is relevant for content producers: yes no

5) Is relevant for content distributors: yes no

6) Is relevant for content consumers: yes no

4.4.9 The Directors' Layer

The Directors' Layer includes all artistic elements and defines how a user can

interact with the scene. The simplest form of interaction is viewing through a

camera. The Directors' Layer specifies camera, its parameters, location in

space and viewing direction. The Directors' Layer also defines artistic

manipulation of data, e.g. by introducing blurs, reducing sharpness, cutting color

channels, etc. Beyond these camera specifications the Directors' Layer may

specify other ways of user interaction, e.g. allowing different viewpoints, content

manipulation or content interaction. Conceptually the Directors' Layer creates a

piece of art from a stage by defining what the viewer will see and how the user

can interact with the content.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 17 of 39

A Directors' Layer as described

1) facilitates post-processing: yes no

2) enhances the users’ media experience: yes no

3) enables new artistic features: yes no

4) is relevant for content producers: yes no

5) Is relevant for content distributors: yes no

6) Is relevant for content consumers: yes no

4.4.10 The example video in SRA

The content of the following video clip [here the first frame is shown] was

generated according to the Scene Representation Architecture concepts

described here.

Despite the artefacts in this video, do you think, the SRA as a whole

1) is promising: yes no

2) is necessary: yes no

3) facilitates post-processing: yes no

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 18 of 39

4) enhances the users’ media experience: yes no

5) enables new artistic features: yes no

6) will cost too much effort: yes no

7) provides added value to content producers: yes no

8) provides added value to content distributors: yes no

9) provides added value to content consumers: yes no

10) will be used by content producers: yes no

11) will be used by content distributors: yes no

12) will be used by content consumers: yes no

13) will be used by your company: yes no

14) will be used by you as a private person: yes no

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 19 of 39

5 Algorithmic Requirements to the SRA

Several algorithmic requirements have been identified for the Scene

Representation architecture. These requirements are categorized into three

groups: Requirements from application and user side, requirements from

algorithmic point of view and requirements coming from the architecture itself.

The requirements imposed by the architecture have been described in the

previous section already. In the following a brief summary of the requirements

for the Scene Representation Architecture from application and user side as

well as from an algorithmic point of view are given. For a full description of the

Algorithmic Requirements please refer to D4.3.1.

5.1 Requirements from application and user side

One use case addresses the basic functionality for object insertion and

interactivity. To realize them there are certain requirements for the Scene

format to provide the necessary information or data. To achieve a high level of

flexibility and adaptability, the object insertion should be done at a rather late

stage of the production and play-out pipeline, e.g. during the play-out in a

broadcast center. To achieve this idea the format needs to allow for a late

decision concerning the object insertion, i.e. a late selection of the object to be

rendered with the scene. Thus, the Scene format shall support the storage of all

required information and data to allow for this late insertion.

Virtual studios provide an application use case focused on real time

rendering. Virtual studios will use on one hand direct output from capturing

devices, and on the other hand processed information included in scene files

that will be ready or almost ready for real time rendering.

Cinema production and post-production require a combination of elements

generated using very diverse acquisition and modelling methods. Merging these

different inputs without compromising on realism or introducing discomfort to the

viewer imposes a number of requirements in terms of being able to model the

geometry of elements, appearance and lighting or general scene framing.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 20 of 39

5.2 Requirements from algorithmic point of view

Polygon meshes are one of the most popular representations used in

computer graphics to describe the shape and appearance of objects. As they

have become very widely used in the digital media industry and more generally

in all fields requiring representation of shape and appearance the Scene

Representation Architecture is required to allow storage of polygon meshes.

With regard to data representation, classical computer vision algorithms are

based on images. Scene structure properties, such as disparities or depth are

therefore usually defined or specified on pixel-level and thus describe pixel-wise

relationships. This holds also for extended properties, such as confidence or

transparency information. These properties are often stored in maps, which

have the same spatial dimensions as the corresponding image. Each entry of a

map represents the property of the corresponding pixel in the image. Based on

this, one very important requirement for the new scene format is the capability

to store these data without loss of quality. More generally, data arrays of pixel

properties, such as pixel colour, depth, confidence, transparency etc. need to

be allowed in the Scene Representation Architecture.

Algorithms will require camera descriptions in order to be able to relate

images to the 3D scene that they represent. The mapping between 3D scene

points and 2D image points is represented in the form of a camera model and a

set of calibration parameters. The most commonly used representation is the

pinhole camera model which models an ideal lens with infinitely small aperture;

this is often combined with a distortion function modelling lens aberrations.

To enable different algorithms to properly interface with acels representation it

is imperative that acels can be linked to each other. Furthermore, in order to

keep the effect of these algorithms consistent with the overall representation,

coherence of the connectivity needs to be defined and maintained in the Scene

Representation. Here, coherency tables, spatiotemporal connectivity, mesh

surface deformations or material connectivity are requirements for the

algorithms which need to be represented in the Representation Architecture.

Animation allows the director to alter the geometric appearance of a

deformable object under certain constraints. Usually this is done by providing a

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 21 of 39

3D model of the object that has rigid and flexible parts which can be set to a

specific configuration or sequences of configurations using a suitable user

interface. Animation data generated in such content provides valuable input to

scenes and should therefore be contained in the Scene Representation

Architecture as well.

In order to photo-realistically merge objects in a scene extraction of material

properties and appearance and the provision of this knowledge in the Scene is

fundamental. The scene representation therefore needs to allow storage and

retrieval of object properties and appearance.

The following figure summarizes the algorithmic requirements for the Scene

Representation Architecture. For a full description and definition of these

requirements please refer to Deliverable D4.3.1.

Figure 3: Algorithmic requirements to the Scene Representation

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 22 of 39

6 Technical Specification of SRA API

6.1 Motivation

In order to meet the multiple requirements identified in the preceding sections

and in the previous documents delivered in the SCENE project (especially

D4.1.1 and D4.3.1) a flexible and extendable way of storing data needed to be

developed. Especially with multiple tools and algorithms in the project scope still

under development this goal of creating an extendable option to store scene

data is of huge importance. During the development it was noticed that no fixed

file format can be specified that can fulfil requirements which are not yet fully

known and still advancing. The implementation of an API solves this dilemma.

By designing an API access to scene content can already be specified, allowing

applications and algorithms to make use of the scene data. At the same time

the underlying data structure can still be enhanced and modified. Even the API

is easily extendable by functions exceeding the currently known requirements.

A few of the numerous benefits of an API are

a) Extendibility: in the future further functions and necessities can be easily

added. If a certain way of accessing Scene data is needed, only a

function needs to be added to the API. The underlying file structure is not

affected by such enhancements.

b) Flexibility: requirements to the data structure are still open. Questions

which will heavily affect the format like compression or streaming are not

really in the scope of the SCENE project and will be dealt with in future

research. An API allows to exchange the underlying file structure easily

without affecting the tools and algorithms which already employ scene

data.

c) Creativity: The Scene API is designed to facilitate module contributions

and therefore enhance the creativity of its users. Adding new

computational modules for further algorithmic processing of scene

content or adding new tools with currently unknown requirements is an

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 23 of 39

easy thing to do. An API therefore boosts the creativity of developers and

producers at the same time.

The following figure sketches the SCENE API and presents where further

creative input can be implemented.

Figure 4: Technical Outline of the SRA Components

6.2 Basic Access to SCENE Data

The scene interface defines access to the scene data. The following data

classes can be accessed:

1) Scenes

2) Streams

3) Acels

4) Acel Values

5) Acel Lists

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 24 of 39

6.2.1 Scenes

 A scene is a container of all data available in the context of a scene as

conceptually defined in section 4 and needed by the technical requirements in

section 5. The scene class exposes several functions. These are

- GetGlobals: returns all the acels defined in one scene

- GetStream: return the currently selected stream

- GetStreamCount: retrieve the number of available streams

 class IScene
 {
 public:
 /// returns acels defined in for all frames
 virtual PAcel GetGlobals() = 0;

 // get number of available streams
 virtual size_t GetStreamCount() = 0;
 // get new stream with index i
 virtual PStream GetStream(size_t index) = 0;
 virtual ~IScene() {}
 };

6.2.2 Streams

A stream is a sequence of frames. To use streams two functions are defined

- AdvanceToNextFrame: gets the next stream frame, and returns “false” if

end of stream is reached

- GetCurrentFrame: retrieves the acels representing the currently loaded

frame

 class IStream
 {
 public:
 /// load next generic stream frame, return false if end of stream,
 /// affects the frame that is returned by GetCurrentFrame
 virtual bool AdvanceToNextFrame()= 0;
 /// get acel representing currently loaded frame
 virtual PAcel GetCurrentFrame()= 0;
 virtual ~IStream() {}
 };

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 25 of 39

6.2.3 Acel

An acel is an atomic scene element, and can contain any kind of data. The

conceptual and technical description of an acel is given in the previous sections

and in previous deliverables. The following functions are exposed for acels:

- ID: is the unique identifier of an acel

- List: a list containing the internal structure of an acel in case such a

structure is available

- Property: returns the acel part of the list identified by a property name. If

such a property does not exist in the internal acel structure an

UnsupportedProperty-Error is thrown

- Value: the value of the acel, that can be converted into a primitive data

type (mesh, image, …) depending on the available information and the

use

 class IAcel
 {
 public:
 // the unique id, equal for the acels with identical content
 virtual oid_t Id()=0;
 // list of child acels
 // the list is owned by the acel
 virtual IAcelList* List() = 0;

 class UnsupportedProperty { };
 // named child acels, if acel with this name doesn't exist
UnsupportedProperty is thrown
 virtual PAcel Property(string name) = 0;

 // value object, that can be converted to primitive data types
 // object is owned by the acel
 virtual IAcelValue* Value() = 0;
 virtual ~IAcel() {}
 };

6.2.4 Acel List

An acel list contains multiple acels. This is e.g. used to for multiple acels

occurring in a frame, or any other context where many acels are requested.

Acel Lists have two can be accessed by

- Count: returns the number of acels in a list

- Get: returns an acel out of the list by ID

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 26 of 39

 class IAcelList
 {
 public:
 /// number of acels in the list
 virtual size_t Count() const = 0;
 /// get acel from the list by index
 virtual PAcel Get(size_t index) = 0;
 virtual ~IAcelList() {}
 };

6.2.5 Acel Value

The acel value contains the actual acel data. This can be any kind of data,

which can be represented by a requested primitive data type. Conversion

modules are responsible for the data conversion into a primitive type. If the

conversion is possible the data is returned in this primitive data format. If the

conversion is not possible, an unsupported type error is returned. The following

functions are exposed:

- GetFloat: returns acel data in floating point precision

- GetInt: returns acel data in integer precision

- GetString: returns string representation of acel value

- GetBool: returns Boolean representation of acel value

- GetFloat3: return data as 3D vectors with floating point precision

- GetInt3: return data as 3D vector with integer precision

- GetByteBuffer: return data with arbitrary structure, e.g. as n-dimensional

byte vector

- GetFloatBuffer: return data with arbitrary structure, e.g. as n-dimensional

vector with floating point precision

- GetIntBuffer: return data with arbitrary structure, e.g. as n-dimensional

vector with integer precision

-

 class IAcelValue
 {
 public:
 struct UnsupportedTypeError : public std::exception{};
 // scalars
 virtual float GetFloat() = 0;
 virtual int32_t GetInt() = 0;
 virtual string GetString() = 0;
 virtual bool GetBool() = 0;

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 27 of 39

 virtual float3_t GetFloat3() = 0;

 // arrays of common basic types
 virtual byte_buffer_t GetByteBuffer()= 0;
 virtual float_buffer_t GetFloatBuffer()= 0;
 virtual int_buffer_t GetIntBuffer()= 0;
 virtual ~IAcelValue() {}
 };

6.3 Scene Tools

The computational modules are ordered into three classes, which are

1) Tools

2) Modules

3) Converters

These three different computational tools are described in the following.

6.3.1 Tools

Tools are providing interfaces for some dedicated functionality. For example,

the scene renderer is such a tool, an object tracker could be another one. The

Tool-Class exposes a function to create a computation module. If such a

module can not be created an unsupported Module Error is thrown. Exposed

functionality:

- CreateModuleXY: tries to create a computational module for a specific

means. For example, the function CreateModuleDepthToMesh can be

used to create a module capable of calculating depth information to a

mesh, or the module CreateModuleMeshRendering creates a module for

returning renderable mesh information. XY here is a placeholder for the

specific task a module is created for, i.e. DepthToMesh or

MeshRendering in the examples above.

6.3.2 Module

The Module class provides the interface to the computational modules. These

modules can execute computations on acels. The following functions are

exposed to use module functionality:

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 28 of 39

- GetInputXY: in order to retrieve a specific input this function can be

used, where XY specifies the input type, like GetInputTexture or

GetInputMesh

- Execute: executes the module. The result of this execution is an acel

which can be returned to the acel storage or be further processed. In

case of missing module information an InputNotSetError is thrown,

indicating the missing information.

 class IModule
 {
 public:
 // exception raised if one or more inputs are not set
 struct InputNotSetError : public std::exception
 {
 string name;
 InputNotSetError (string name) : name(name) {}
 };

 // execute the module.
 virtual PAcel Execute() = 0;
 virtual ~IModule() {}
 };

6.3.3 Converter

Converters are used to convert the representation of an acel into some other

representation that is required as module input and load the data into the input

of that module. In order to make use of the converters the following module is

exposed:

- Assign: loads the data from the acel (from disk or input stream) into the

associated module input. If the acel cannot be converted to the data

structure required by the module input, the exception

UnsupportedTypeError is thrown. When data is loaded to the module

input its intermediate representation specific to the input type is created.

This intermediate representation is used every time this acel is assigned

to any input of the same type unless the acel object is destroyed. The

return value is false if this intermediate representation was used and true

if the object was converted from an acel.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 29 of 39

 class IConverter
 {
 public:
 /// loads the data from acel into the associated module input
 virtual PConverterCache Assign(PAcel value) = 0;
 virtual ~IConverter() {}
 };
 /// keeps track of module-specific cache objects created from acels
 class IConverterCache
 {
 public:
 // destroy the cache
 virtual void Release();
 virtual ~IConverterCache(){}
};

6.4 Access for Applications

Applications access the SCENE API through dedicated interfaces which provide

the functionality that the application requires. Exemplarily the renderer interface

is specified here.

6.4.1 Renderer Interface

The renderer interface provides the entry point for the renderer implementation

and provides a collection of modules for acel processing required by the

renderer.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 30 of 39

Figure 5: Process Visualization for inter-component communication

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 31 of 39

7 Examples

7.1 Video Rendering

Exemplarily here is a description of how video rendering with the SCENE API

works. For illustration purpose Python-Code snippets are added to the

individual steps. The following steps are executed:

1. A script contacts the Scene API to retrieve information on scene content.

This request returns some global information of the scene, like what kind

of information can be queried from the scene and how that information

can be used.

 filename = "../sample_data/collada.scene"

 demo.scene = sra_renderer.get_scene_representation(filename)

2. The script choses an available video stream from the scene data.

 self.stream = self.scene.GetStream(0)

3. The script contacts the Renderer that content of the scene file shall be

rendered.

 demo.renderer = sra_renderer.get_proto_renderer(self.scene, '')

4. The renderer addresses the SCENE API to create a renderer module. A

new module is then created dedicated to rendering SCENE content.

 demo.mod_render_mesh = self.renderer.CreateModRenderMesh()

 demo.mod_camera = self.renderer.CreateModViewPoint()

 demo.mod_render_depth = self.renderer.CreateModRenderDepthMap()

5. When the modules are created an input port for scene data is returned to

the script.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 32 of 39

6. The script then accesses the SRA file through the SCENE API and

requests SCENE data, this time specific on a frame basis.

 demo.renderer.BeginFrame()

 demo.stream.AdvanceToNextFrame()

7. The SCENE API returns the requested frame content of the SRA to the

script.

 stream_frame = demo.stream.GetCurrentFrame()

8. The script assigns the frame to the input of the rendering module.

 demo.mod_render_depth.DepthMap.Assign(stream_frame)

 demo.mod_render_depth.Texture.Assign(stream_frame)

9. The script asks the rendering modules to execute. The SCENE content

delivered to the rendering module is then rendered.

 demo.mod_render_depth.Execute()

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 33 of 39

8 File Format

For storage of the scene data basically any kind of hierarchically structured

data can be used. A set of standard scene elements is proposed as the core of

the file format. These elements can be flexibly extended according to the

requirements of other scene tools that use the SCENE data. Exemplarily for

these tool specific extensions we present structured data required for the

renderer here.

Currently a set of converter scripts can convert the traditional inputs to be

accessed and used by the scene API. With the help of these scripts even large

amounts of data can be automatically converted to the scene format. One of the

future efforts will be to allow storing data in the SRA from the SRA API as well,

thus allowing tools and algorithms to work with the API only and store

processed data in the API again. The set of converters necessary for the

integration of different data types can be easily extended, maintained and

updated as the requirements to data inputs and outputs evolve.

The entry point for general scene data is called “Global”. This global set of

information contains acels of any kind as well as camera information. Further

information of global scope can be easily added to the currently defined set. For

specific tools this information is extended. Here, the “Streams”-Structure adds

information necessary for rendering scene content as a video stream. The

following figure represents the structure of data.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 34 of 39

Figure 6: Components of structured data

Access functions to the data need to be designed accompanying the data

storage.

While any kind of hierarchical storage can be used as soon as a storage and

the corresponding access functions are implemented, the current Scene API is

implemented using Protocol Buffers. Protocol Buffers were developed by

Google as their internal exchange format for all kinds of data. According to the

documentation website “Protocol Buffers are a way of encoding structured data

in an efficient yet extensible format.” [1]

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 35 of 39

While file format and access is on purpose not specified here (see motivation

for more flexibility) the following example illustrates how information is currently

stored and accessed at the example of an acel.

The following function is used to access acel information from the file. If the

decision is made to move acels from Protocol Buffer storage to any other way of

storing acel information, only the following header file and the corresponding

implementation need to be adjusted. The following two source code pieces

exemplarily show the access of acels stored in the Protocol Buffer.

Header File:

class XAcel: public IAcel
{
 const pb::Acel& acel;
 std::vector<PAcel> list;
 XAcelList xlist;
 shared_ptr<IAcelValue> PtrValue;
 XAcel(const pb::Acel& a);
public:
 static IAcel* CreateAcel(const pb::Acel& a);
 virtual oid_t Id();
 virtual IAcelList* List();
 virtual PAcel Property(string name);

 virtual IAcelValue* Value();
 virtual ~XAcel() { }

};

Class File:

sra::oid_t XAcel::Id()
{
 return (sra::oid_t)this;
}

IAcelList* XAcel::List()
{
 if (list.size() == 0)
 {
 for (
 auto p = acel.children().begin();
 p!= acel.children().end(); p++)
 {
 list.push_back(PAcel(CreateAcel(*p)));
 }

 xlist = XAcelList(&list);

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 36 of 39

 }
 return &xlist;
}

PAcel XAcel::Property(string name)
{
 for (
 auto p = acel.properties().begin();
 p!= acel.properties().end(); p++)
 if (p->name() == name)
 {
 return PAcel(CreateAcel(p->value()));
 }
 throw UnsupportedProperty();
}

IAcelValue* XAcel::Value()
{
 if (acel.has_value())
 {
 if (!PtrValue)
 PtrValue = PAcelValue(new XAcelValue(acel.value()));
 return PtrValue.get();
 }
 else
 return &ErrorAcelValue::Instance;
}

sra::IAcel* XAcel::CreateAcel(const pb::Acel& a)
{
 if (a.has_ren_camera())
 new BAcel(&a.ren_camera());
 else if (a.has_ren_depth())
 new BAcel(&a.ren_depth());
 else if (a.has_ren_geometry())
 new BAcel(&a.ren_geometry());
 else if (a.has_ren_rgb())
 new BAcel(&a.ren_rgb());
 else
 return new XAcel(a);
}

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 37 of 39

9 Conclusion

The described Scene API represents the best solution to provide applications

and algorithms with the means to access a new kind of data and maintain the

flexibility for further developments at the same time. The API can easily be

extended to all sides. By adding file readers for additional file formats other

formats and data types can easily be integrated into the Scene API.

Computational modules and converters can be linked into the Scene API

enabling new intermediate processing steps and further required output

formats. And finally the functional interface of the API can be extended to meet

the requirements of future tool developments.

A basic API implementation provides the basis for further developments. The

Scene prototype renderer uses the Scene API for scene data rendering and

serves as an example for other tools.

Overall, the API specification presents an entry point for further development

and a crucial step to integrate the multiple algorithms and tools that are

developed in the context of SCENE.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 38 of 39

10 Summary

The technical specification of the Scene Representation Architecture is an

important step towards the integration of all SCENE related algorithms and tools

into a unified project. It contains the technical realization of the conceptual

description of the Scene Representation Architecture contained in document

D4.1.1. Furthermore, it enables the requirements for the Scene Representation

Architecture identified in document D4.3.1.

The document begins with a recap of the conceptual description and the

results of a feedback request sent to multiple experts to receive feedback on

this conceptual description. This conceptual evaluation is succeeded by a

section briefly listing the main requirements from an algorithmic and use case

perspective. The main part of this document technically describes the

implementation of a SCENE API enabling already defined requirements and

allowing future project development and enhancements at the same time.

FP7-287639 D4.1.2 Technical Specification of the SRA

SCENE_D4.1.2_22052013 Page 39 of 39

11 Bibliography

[1] http://code.google.com/p/protobuf/

